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The Construction And Asymptotic
Behaviour Of Some m-Dimensional
Simple Epidemic Models.

by
Naftali A. Langberg

ABSTRACT

k popuiation of susceptible irdividuals exposed to m contagious diseases
is considered. The progress of this epidemic among the individuals is modeled
by an m-dimensional stochastic prccess. The counpcnents of this process repre-
sent the number of infective individuals irith the respective diseases at time t.

A class of m-dimensional stochastic processes is constructed. These
processes describe the progress of the epidemic models considered in the sequel.
Exact and approximate forrmulas for the joint and marginal state probabilities
of these models are obtained. It is shcwn that the approximate formulas are
relatively simple functions of time wiile, “he d:rivations of the exact for-
mulas involve tedious computations. The results cbtained in the paper are
applied to a sample of examples. ..

Key words: m-dimersional siﬁple epidemics, exponential, negative bino-
mial and Poisson random variables, stochastic processes and convergence in

distribution.
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1. Introduction And Summary.

In a simple epidemic situation we assume that a population of suscepti-
ble individuals (susceptibles) is exposed only to one contagious disease
(disease) [Bailey (1975)]. However, frequently susceptibles are exposed
simultaneously to more than one disease, as is the case with different
types of flu. In this paper we consider a population of susceptibles
exposed to m diseases, m =1, 2, ... . We say that this population undergoes

an m-dimensional simple epidemic if the following six assumptions hold.

(1.1) At each point in time at most one susceptible contracts a disease.

(1.2) Each susceptible constracts at most one disease,
(1.3) Once a susceptible contracts disease r, r = 1, ..., m, he remains
contagious for the duration of the epidemic.
(1.4) An infective individual (infective) with disease r, r =1, ,,., m, can
only transmit that disease. ,
(1.5) All interactions between a susceptible and an infective with a specified
disease are equally likely to result in an infection.
(1.6) Individuals neither join nor do they depart from the population.
Note that for m = 1 the m-dimensional epidemic reduces to the univariate
simple epidemic.

Let TO denote the first time we have at least one infective with each
of the va;;;us diseases, and n, finite or infinite, the number of suscepti-
bles at time To. We describe the progress of m dimensional simple epidemics

among susceptibles by an m-dimemsional stochastic process

5n(t) = [xn,l(t)""’xn,m(t)]’ te[0,«), The components of §n(t) represent
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the number of infectives with the respective diseases at time t measured
from To. In Section 2 we construct a variety of m-dimensional stochastic
processes, These processes describe the progress of the epidemic models
considered in the sequel.

The computation of state probabilities in epidemic models is of major

interest to researchers. In Scction 3 we derive formulas for the joint and

marginal state probabilities: Pn,k(t) = P{gn(t)-§n(0)=5}, and

Pn K r(t) = P{Xn,r(t)-xn’r(0)=k}, where §:= [kl,...,km], k, kl’ cees kme{O,l,...},

r=1, ..., m, and te(0,~). We calculate these formulas without the tradi-
tional use of the differential equations associated with the state probabil-
ities, This is done by utilizing a formula for the distribution function
(df) of a sum of independent exponential random variables (rva's) given by
Billard, Lacayo and Langberg (BLL) (1980).

The fo- -.i:; for the state probabilities obtained in Section 3 are
rather complicated. To overcome this deficiency we derive relatively simple
approximations to thc state probabilities when the initial number of suscep-
tibles: n, is sufficiently large. To be more specific some notation and a
definition are needed. Let X (t), §n(t), be m-dimensional stochastic

g ¢ (t), the total number of

processes, X _(t) = Z:,l Xw.r(:)’ Xn(t) = Zr.1 n,r

infectives at time t measured from TO' and let Y(t) be a nonnegative rv,
te[0O,®), n=1, 2, ... .

Definition 1.1, Letn=1, 2, ..., ». Then the transition rate of

disease r, r = 1, ..., m, at time t, te(0,») is given by

ﬁi;’ h‘lP{Xn’r(t¢h) - xn,r(t) = llln(t)}, and is denoted by R(En(t),r).




In Section 4 we assume that for all k = [kl,...kmj, and given s, Be(0,»)

(1.7) 2im X_(0) = X_(0),
o M

(1.8) Zim R(Zn(0)+5,r) = R(X_(0)+k,r), r =1, ..., m,
e

(1.9) E{¥(s)}® < =, and that
(1.10) for xe[X_(0),») and almost all ne{l,2,...}, P{Xn(s)Zx} s P{Y(s)2x}.
We show that under Conditions (1.7), (1.8), En(t) converges in distribution as
n-+oto &w(t) for all te(0,), Using this result we can approximate Pn k(t),
’—
and Pn K r(t) by the respective state probabilities of the process X_(t). Further,
» »

we show that £im E{X_(s)}® = E{X_(s)}®, and that £im E(x_ _(s)}® = E(x_ _(s))®,
oo n e LT ,T

r=1, ..., m, provided Conditions (1.7) through (1.10) hold. Note that if
Be[2,»), we can approximate EXn’r(s), Exn(s), Var{xn’r(s)}, and Var{x“(s)}, by
the equivalent counterparts of X (s).

BLL(1979) consider a special class of m-dimensional simple epidemic models
and name them the symmetric m-dimensional simple epidemics., We say that a pop-

ulation exposed to m diseases undergoes a symmetric m-dimensional simple epidemic N

if Assumptions (1.1) through (1.6) hold and if the transition rate of disease r,

r=1, ..., m, at time t, te[0,») is given by:

n-laxn’r(t)(n+Xn'r(0)-Xn’r[t)), n=1,2,...,

(1.11) R(in(t).r) =

axa’r(t) » n = ®,

where ae(0,=). The transition rates givenin Equation (1.11) for the case n =
depend only on the number of infectives with the respective diseases. This
special structure of the transition rates is shared by a variety of models as

is shown in the last section. In Section 5 we assume that

[
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(1.12) R(X (t),r) = A(Xwﬁﬁt),r), r=1, ..., m, tel0,=},

where A(k,r), k = xw,r(O), X, r(0) +1, ..., r=1, ..., m, are sequences

2

of positive real numbers. We prove that

(1.13) forr=1, ..., m, k=0,1, ..., and te(0,=),

P{Xm'r (t)—xw’r (0) =k}

k < -1
=P{zq=1[A(XQ,r(O)+q-1,r)) Ugst)

where Ul’UZ’ ..., are independent indentically distributed (iid) exponential

rva's with mean 1. Further we show, as expected, that
(1.14) for all te(0,»), the components of X _(t) are independent.

These results are applied in Section 6 to simplify the approximations to the

state probabilities and to related moments. Note that under Condition (1.12)
the processes Xm’l(t), ey Xm’m(t), describe the progress of m independent -
univariate simple ecpidemic models among susceptibles in closed populations
of infinite sizes.
In Section 6 we apply the theory developed in the previous sections to

some classes of m-dimensional simple epidemics, and other models in Epidemiology.




2. Model Construction.

In this section we construct m-dimensional stochastic processes. These
procésses describe the progress of m-dimensional simple epidemics in a pop-
ulation of a finite or infinite number af susceptibles.

First, we introduce some notation. Let N(n) = n+ 1 for n < =, and

s » for n = », and T 1 £ k < N(n), the kEE-interinfection time defined as

kl

the time that elapses between the Xn(O) + k -1 and the xn(O) + k infection.

Further, let K’ 1 sk < N(n), be a rva assuming values in the set {1,...,m},
L1

and §

n,0
for the X (0) + k infection., Finally, let I be the indicator function,

2 0, The rva En K’ 1 ¢ k < N(n), designates the disease responsible
14

S , and Sn

N(n) = =, The rva Sn,k' l sk <Nmn),

describes the time measured from T0 until the xn(O) + k infection. In par-

ticular Z (n)T represents the duration time of the m-dimensional simple

n,O Zq=1 n,q

epidemic.
Note that for 0 s k < N(n), r =1, ..., m, and te(0,»), the following

event equality holds.

2.1) (Xn,r(t)-x (0)=k) =
= U St<S , I E -
k$q<N(n)( n,q n,q+l Zq.l ( r) ).

Thus, to construct tle process §n(t) if suffices to determine tiue df's of the

random vectors (rve's) [T, ,q=1,...,k], 1 Sk < N(n). Next we determi...

n,q’*n,q
the df's of these rve's. We need some more notation. Let J , be the
n,k,
index set of all infectives with disease r at time To + Sn K-1° and
»
Coyr" X, Xq-o g ) 1sk<Nm), r=1, ..., 8 ThersC ,




represents the number of infectives with disease r at time T0 + Sn Kk-1° Fur-
k-

ther, let u(n,k,q,r), 1 s k,q <N(n), r=1, ..., m, be positive real numbers

and ik’ 1° 1,

common probability space. The rva Thik describes the time measured from
E R

ces Xn(O) +k -1, 1=k <N(n), be rva's defined on a

the Xn(O) + k - 1 infection until the iEh-contagious individual causes the

Xn(O) + k infection. Throughout we assume that

o ,
2.2) the conditional rva's {Tn,i,klgn,o""’En,k-l}’
i=1, ..., Xn(O) +k-1,1 5 k < N(n), are

independent exponentially distributed, and that

(2.3) E{t } =

i kl%n,00 260 k1
-1 .
=y (n,k,Cn’k’r,r), IEJn,k,r’ 1 sk<Nmn), r=1, ..., m,

We are ready now to determine the df's of the rve's ETn,q’gn,q’q =1l,...,k},
1 s k < N(n). First, we determine the df's of the rve's [En,l""’gn,k]’
1 s k < N(n). We need the following.

Lemma 2.1. Let us assume that Conditions (2.2), (2.3) hold, let

r=1, ..., m,and 1 S k < N(n). Then

(2.4) p{En,k-r‘En,o”'"En,k-l} =
<. _un,k,C % c L un,k,C o1t
n,k, " VU n Lk, £=17"n,k, 2"V " n kL ‘

Proof. Note that the event (En k-r) is equal to
. - ’ m
Onln{tn,i,k: I'Jn,k,r}<ml“{tn { kb ie U Jn,k,l})' Consequently Statement (2.4)

L 25
Ler

follows by Conditions (2.2), (2.3) and simple integral evaluations. ||

Note that Equation (2.4) determines the df's of the rve's [En 1""’En kJ,
H ]

1 £ k < N(n). Next, we determine the df's of the conditional rve's

[{Tn.qlcn’ojtocen’q_l}i q= I,o-n.k], 1 < k < N(n).




Lerm~ 2.2. Let us assume that Conditions (2.2), (2.3) hold. Then

A

tiie conditionzl rva's {T }, 1 £ k < N(rn), are indepen-

n,klgn,O""’En,k-l
dent exponentially distributed with means equzl respectively to
(e

w(n,k,C ,r)17t.

=1Cn,k,r ak,r

= pin{s

Proof, Note that T :
—_— n,k

n,i,k: i= 1,...,Xn(0)+k-1;, 1 £ k < N(n).

Consequently the result of the lumna follows by Conditions (2.2), (2.3) and
some simple properties of expomential rva's. ||
Clearly Lenmas 2.1 and 2.2 togethcr czteruine the df's of the rve's

[T, qofn,q @ Lsesoskds 2 S X <N,

Finaliy, wc show thot the t:iansition rates of an m-dimensional simple
epicemic, =5 e:pected, determine uniquely the epidemic. We need the followirs

lemma.

~ e

Lerma 2.3. Lot ur assume that Conditions (2.2), (2.3) hold. Then
R, (t),r) = Xn,r(t)u(n,xn(t).xn’r(t),r), r=1, ..., m, tef0,=).

Prosf. The result of the lemma i~ - by the mcmoryless property of
cxponential rva's [Barlow, Proschen (1975), p. 56], Equation (2.1) and
Corditions (2.2), (2.3). ||

Consequontly .y Lew:a 2.3 and Condition (2.3) we obtain for ieJn k.r
L bt Rl |

1 <k<Mn),r=23:, ..., m, that

(2.5) E{rn’i,klan’o,...,En’k_l}

C y ooyl

= C n,k,n"

n,k,r[R({C

n,k.l,...,

Thus, clearly m-dimensional simple epidemic models are determined by their

transition rates.

-

U




3. Formulas for the State Probabilities.

1:'-'9km]:

, be positive real numbers.

= K = [
Let k, kl’ cees kme{O,...,n}, n=1,2, ..., k= [k

s(k) = Z$=1kr, and 61, 8

27

This section contains formulas for the joint and marginal state prob-
abilities: Pn,h(t), and Pn,k,r(t)’ r=1, ..., m te{0,=). These formulas
are calculated without the traditional use of the differential equations
associated with the state probabilities. Rather, we utilize an available
formula for the distribution function of a sum of independent exponential
rva's. For the sake of completeness we present this formula.

Theorem 3.1. (BLL (1980), Theorem 2]. Let M be a positive integer,
and £,(j) = I ; ejQ‘l, j =M, M+l, ... . Then for te(0,x)

Syt iy=d qel

(3.1) P1g-1% uqSt} ZJSMZM(J)( -©)3/5.

To aid in computing the joint and marginal state probabilities we

introduce the following notation. Let £(k) = [lo,...,ﬂk],£0=0,£1,...,ﬁke{l,..,m},

B(k) = {gﬁs(g)):Zzﬁg)x(£q=r)=kr,r-1,...,m}, and A(r,j k) = 1£G):JJ_ 12 =r)=k},

j =k, kel, ...

By Equation (2.1) we obtain that for te(0,»)

(3.2) P"ni‘t) = é-(5(%)gP{Sn’S(l_()susn,s()—().ﬂ|gn’q-.-£q,q==0,...,s(l_(__)"}.

-P{E q.q- 0,...,5(k)}1(L(s(k))eB(k))]1, and that forr =1, ..., m
n 7 s L
(3.3) Pn,k,r(t) = Duk E(j)[P{Sn’jSt<Sn’j+1lin’e-ﬂe,e 0,...,j}

-P{En e-le,e 0,...,j}1(£(j)eA(x,]j,k))].

Thus, to compute Pn’bﬁt) and Pn,k,r(t) it suffices to evaluate P{En’qslq,q=0,...,k},

£ ,q=0,...,k}.

and PS, | st<s, 1€, =8

gy o rmee e
_———
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Now, we present formulas for these probabilities. Let

Dy 4 r 2L = X, (0) + [35 1¢¢=r), and

n(n,k,£(k).q) = Zf=lu(n,q,nn « 2K),Q),1), g =1, ..., k+ 1. First, by

Statement (2.4)

(3.4) P{En q=£q,q=0,...,k} =
k

= n [{ﬂ(n,k,ﬁ(k),“l)}
q=1

qm L(£gmr)
rgl{u(n.q,Dn,k’r(gﬁk),q,r)} 1.

. . k -1
Next, let fk(el,...,ek,t) be the density function of the rva Zq=leq Ud Then

for k=1, 2, ..., t €(0,»)

3.5 PIy perlugseclectu ) -
-u)

-8 (t
_ ot k+l _ a-i
g e £,(8,. 0,8, u)du = B F(8,...,0, ., ,t).

Thus, by Lemma 2.2 and Theorem 3.1

(3.6) ' P{Sn’kst<Sn’k+1|£n,q=£q=0,...,k} =
o-n(n,k,£(K), 1)t k=0
w (13-l n .
iy 1k, P k= n
J=n ) Jqit.ot]) =] _ -
j: 1 n - g=1
=
k+j j-1
-1 -1) )t
{n(n,k,L(k) ,k+1)}" Z _ 1. ..
kot G-1)r 31t tIger™d
k+1
I {n(n,k,£(k),q)} q 1 £k <n.
[ q=1

Consequently, the formulas for the joint and marginal state probabilities
can be obtained from (3.2) and (3.3) by substitution. Note that, as expected,
the exact formulas for the joint and marginal state probabilities are rather

complicated.
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4. The Asymptotic Approximations.

In this section we present the asymptotic approximations of the joint
and marginal state probabilities and of some related moments. All limits are
calculated as n - «, First, we show that under Conditions a.7), (1.8), gn(t)
converges in distribution to X _(t) for all t ¢(0,»). Then we prove that
£im E(X_(s)}® = E{X_(s)}, and that fim B(X, ()}° = E{Xw,r(s)}B forr=1, ..., m,
provided Conditions (1.7) through (1.10) hold.

To establish the convergence of §n(t) to X_(t) we need the following two
lemmas,

Lemma 4.1. Let us assume that Conditions (1.7), (1.8) hold, let

k=1, 2, ..., and 21, cens tk e{1l,...,m}. Then

4.1 Zim P ,9=1,...,k} = P =f ,q=1,...,k}.
(4.1) im {5 q q= } {Sm’q q’% }
Proof. Let £0 = 0, Then P{E ,q =1,...,k} =
k
n P{E =L |E » j=0,...,9-1}. Consequently Statement (4.1) follows by

q=1 ™4 a'°n .75

Conditions (1.7), (1.8), and Statements (2.4), (2.5). ||
Lemma 4.2. Let us assume that Conditions (1.7), (1.8) hold, and let
k=1, 2, ... . Then the conditional rva's {S_ . |&_ ,q=0,...,k-1} converge
n,k'"n,q

in distribution to the conditional rva {S q=0,...,k-1}.

m,klgw.q
Proof. To prove the result of the lemma it suffices, by the Cramer-Wold
device (Billingsley (1968), p. 491, to show that the conditional rve's
{[Tn,l""’Tn,kJ'En,q’q’o"'"k'l} converge in distribution to the conditional rve
{[Tﬂ,l""’Ta,kjlew,q=£q’q=0"’”k-l}' The preceeding statement follows by

Conditions (1.7), (1.8), Lemma 2.2, and Statement (2.5). ||

avHAOR e

L
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We are ready now to show that En(t) converges to X_(t).

Theorem 4.3. Let us assume that Conditions (1.7), (1.8) hold and let
t €(0,»). Then the rve's ﬁn(t) converge in distribution to the rve X (t).

Proof. Note that X_(t), Eﬂ(t), n=1,2, ..., are discrete rve's. Thus,
(Billingsley (1968}, p. 161, to prove the result of the theorem it suffices to
show that for all k = [k

.km], k . km e{0,1,...}

1 1’

(4.2) tim P{éﬂ(t)-&n(OjQE)v= PIX_(t)-X_(0)=k}.

Statement (4.2) follows by Equation (3.2), Conditions (1.7), (1.8) and Lemmas
4.1, 4.2. ||
By Cramer-Wold device and Theorem 4.3 we obtain that

Corollary 4.4. Let us assume that Conditions (1.7), (1.8) hold, let

t e(0,), and T =1, ..., m. Then (i) Xn,r(t) converges in distribution to
Xm,r(t), and (ii) Xn(t) converges in distribution to X_(t).
Clearly Theorem 4.3 and Corollary 4.4 (i) insure that the joint and marginal
state probabilities: pn,k(t)’ pn,k,r(t)’ can be approximate by Pm,k(t), Pm,k,r(t)’
respectively. - -

Now, we establish the moments convergence. First, we show that
Lin E(X_()}® = E(x_(s))°.

Theorem 4.5. Let us assume that Conditions (1.7) through (1.10) hold.
Then £im E{xn(s)}8 = E{Xw(s)}s.

Proof. Note that E{X_(s)}*=8/"y*"'P(X (s)>y}y. Thus, the result of the
theorem follows by Corollary 4.4(12), Conditions (1.9), (1.10) and the
dominated convergence theorem [Loeve (1963), p. 125]. ||

Next, we show the convergence of E{xn r(s)}B.
1]

oy
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Theorem 4.6. Let us assume that Conditions (1.7) through (1.10) hold,
and let r = 1, ..., m. Then Lin{X _(s)} = E(X_ _(s)}%.

Proof. Note that E{X (s)}B = Bfmye-lP{X {(s)>}dy, and that for

— n,l‘ 0 n)r
ye{-=,»), n=1, 2, ..., P{Xn r(s)>y} < P{Xn(s)>y}. Thus, the result of the

2

theorem follows by Corollary 4.4(i), Conditions (1.9), (1.10), and the
dominated convergence theorem. ||

Note that if Condition (1.9) holds then E{Y(s)}6<w for Se(-=,B]. Now,
assume that Conditions (1.9), (1.10) hold for all se(0,~) and some pe(2,=),
Then we can approximate EX_(t), EX (t), var{X (t)}, and Var{X (t)} by the

n n,r n n,r

equivalent counterparts of §a(t) for all te(O,»), and r =1, ..., m.




S. Some special m-viuensional simplce ipidemic lodcls.

Let X _(t), tel0,«), L2 un m-dimensional stochastic process describing
the progress of an m-dimcnsional simple epidemic among infinitely many
susceptibles. We assume that the transition rates of X (t) depend only on
the number of infectives with the rsspective diseases. Under this assumption
we identify the distribution functions of Xm’l(t), e Xm’m(t), and show, as
expected, that X_(t) has independent components for te(0,=). These results
are then used in Section 6 to¢ c¢btain relatively simple approximations to the
state probabilities and to some rclated moments of certain classes of
m-dimensional simple epideuics.

We need some notation. Let Zr(t), tell0,?), r =1, ..., m, be independent

stochastic processes assuiaing values in the sets {X°° r(0),)(°° r(0)+1,...},

respectively and determined by the following two equations.

[

(5.1) L0 =X, (0, r=1. ..,m

N7 N T
(5.2) PLz_(e)-2 (3

-

13 -1
= P{Zq=1[A(zr(0)+q-1,r)J qut}
te(0,#), r =1, ..., my k=1, 2, ... .

Further, let Z(t) = S0 Z_(t), Wy (t) = 0, W, (t) = Inf(t: z(t+J* "W )-2(0)=k},
el S P =1 q=0 q

te(0,@), and D, = 2g=0 Weo k=0, 1, ... . Finally, let 4y, k=1, 2, ..., be

rva's assuming values in the set {1,...,m}, determined by the following set
equality
(5.3) (A=) = (Z,(0y) - ZL(Dk-l) =0,

2.0 -2.0 ) =1, 1 #l,...,m), =1, ..., m
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The processes Zl(t), cees Zm(t), describe the progress of m independent simple
epidemics among susceptibles in closed populations of infinite sizes. Assume
we observe the progress of these m independent simple epidemics. Then Z(t)
represents the total number of infectives at time t, Wk(t) models the time
that elapses between the Z(0) + k - 1 and the Z(0) + k infection, Uk describes
the time until the Z(0) + k infection, and Ak indicated the simple epidemic
responsible for the Z(0) + k infection.

In this section we assume that Condition (1.12) holds, and prove that the

processes X _(t) and Z(t) = [Zl(t),...,zm(t)], te{0,»), are stochastically equal.

In particular we obtain Statements (1.13), (1.14).
Let te(0,»), k=1, 2, ..., and r =1, ..., m. Then the following set equality
holds.
(5.4) (Zr(t)—zr(O)zk) =
= qgk(DqSt<DQ+1,Z?=II(Aj=r)2k).

By the set Equalities (2.1), (5.4), the processes X _(t), Z(t) are determined
by [Tw’q,em’q,q=1,2,...], and [Wq,xq,q=1,2,...], respectively. Thus, to prove
that X_(t), Z(t) are stochastically equal it suffices to show that
[Tm’q,ﬁw,q,q=l,2,...], [Wq,Aq,q=1,2,...], are stochastically equal.

Next, we prove the preceeding statement. We need the following.

Lemma 5.1. Let us assume that Condition (1.12) holds. Then [Tw,l,ﬁw,ll
and [wl,All are equal in distribution.

Proof. Let te(0,=), and r = 1, ..., m. Then P{w1>t,A ar} =

1
- Ple<la(¥, (03,1710 <TaRX, 4(0),0)17 Uy, rbeel, .o omb = PAT, (ot,6, ot} ||




We are ready now to prove the main result of this section.
Theorem 5.2. Let us assume that Condition (1.12) holds. Then the two
sequences [Tw’q,ﬁc,fq=l,2,...J and [Hq,xq,q=l,2,...l, are stochastically equal.
Proof. We have to show that for all h =1, 2, ..., the rve's
[T ,Em’q,q=l,...kj, LW

©,q q’
statement by an induction ucguement on k.

X ,9=1...,ki cre equal in distribution. We prove this

First, we present some notation. Let ¢ =1, ..., m, 2(t,2) = g(t+w1),
te (0,=), Zr(O,l) = Zr(O), L¥r = 1, ..., m, and :tgo,l) = Z[(O) + 1. Further,

let Wk(t), Xk(i), be defined as wk, xk, respectively, k =1, 2, ..., where

2(t,L) replaces Z(t). Finally, let X_(t,£), te(0,=), be a m-dimensional
stochastic process as defined in Section 2 such that Xw‘r(u,i) =X r(0),
Bir=1, com X, p(0,8) =X, ,(0) + 1, and et T, (0), &, (8), k=1,2, ...,
be the interinfection times and infection causes associated with Xm(t,l).

We now return to the proof of the theorem. Let k = 2, 3, ..., and te (0,«).
By the memoryless property of exponential rva's the two conditional rve's

(0,

q

equal in distribution to the two rve's [T q(t),cm q(l),q-:l,...,k-l] and
2 »

{[Tm,q,g ,q=2,...,klle’1=t;:m’1=£} and {[Wq,kq,q=2,...,k}[W1=t,7\1=£}, are

[Wq(l),kq(l),q=1,...,k-l] respectively. Consequently the result of the theorem
follows by Lemma 5.1, Bayes formula, and an induction arguement on k. ||

For reference purpcses we summarize the main result of this section in the
following theorem.

Theorem 5.3, Let us assume that the transition rates of the m-dimensional
process X_(t), tef0,=), are given by Equation (1.12). Then Statements (1.13),

(1.14) hold.




le

6. Examples.

Now we apply the theory developed in the previous sections to some
specific m-dimensional simple epidemic classes. Throughout we assume that
Condition (1.7) holds.

Following the classical approach to the univariate simple epidemic
{Bailey (1975)] one can assume that the transition rates of En(t) are propor-
tional to the number of infectives with the respective diseases and the total

number of susceptibles. Let a - ume(O,w). Then the transition rates of

1,

the classical m-dimensional simple epidemic are given by

6.1) R(X, (t),r) = a, Xn’r(t)(n-xn(t)*xn(o)), r=1, ..., m, te{0,=).

From Lemmas 2.2, 2.3 the duration time of a classical m-dimensional simple
epidemic is less than or equal to [min{ar:r=1,...,m}l-12n=1[(xn(0)+q-1)(n-q+1)]'l.
Thus, the duration time tends to zero as n + =, Consequently the classical
models are not describing properly the progress of the epidemic when n is

large. BLL(1979) adjust the classical transition rates and use the symmetric
m-dimensional simple epidemic to discribe the progress of the epidemic when n

is large. There is no apparent reason for the various transition rates to

have the same proportionally coefficient, as is assumed by BLL(1979). We

modify those transition rates, given by Equation (1.11), and assume that for
te[0,»), and r =1, ..., m

anl

(6.2) RO (8),r) =1 T

3, (8D » n=e,

Xn’r(t)(n-xn(t)+xn(0)), n=1, 2, ...

Next, we derive for the models determined by Equation (6.2) the desired

approximations. Let V(b,y,t) = max{k: k = 1,2,...,Z:=l(b+q-1)'luqsvt},




b=1,2, ..., t, ye(0,#). For the sake of completeness we present the
following definition. €
vefinition 6.1. We say that a rva ¥ is negative binomial with parameters

a=1,2, ..., and pe(0,1), and write WNB(a,p) if P{W=k}= [a;fil}pa(l-p)“,

k=1, 2,

Note that by BLL(1979) p. 193 we obtain that

(6.3) VQU,y,t)wBE,e Y, b =1, 2, ..., t, ye(0,®).
%e show next that for all te(0,x), and r =1, ..., m,
m -art
(6.4) ﬁiﬂ Pn’xﬁt) = rEIP{NB(Xm,r(O),e )=kr}, and
-art
(6-5) ﬁiﬂ Pn,k,r(t) = P{NB(Xm,r(O),e )=k},

Note that Conditions (1.8) and (1.12), with a(k,r) = ark, hold. Consequently
Statements (6.4), (0.5) follow by Theorems 4.3, 5.3, and Statement (6.3).

Finally, we show that for te(0,2), r =1, ..., m

a t
(6.6) fim EX_ _ = X_ _(0)(e ¥ -1), and that
n,r ®,T
o
ZGrt urt
6.7) Zim Var{Xn r(t)} =X, r(0)(e -e ).
W i ] )

In particular we obtain from Statements (6.6), (6.7), that for all te(0,»)

a t
. m T
(6.8) Lin Exn(t) = r=1xw,r(0)(e -1), and
n e
) n 2art art
(6.9) Lim Var{xn(t)} = r=1Xw,r(O)(e -e ).

To prove Statements (6.6), (6.7), let §:= Z?=1ar. Then for all te(0,») and

almost all ne{1,2,...}P{Xn(t)2k+xn(0)} s P{Zégl[n'l(n-q+1)(Xn(0)+q-1)]-luqsai} <

s P(V(X_"0),a,t)2k}, k = 0, 1, ... . Thus, Conditions (1.9), (1.10), hold for

[,




i3

all t, Be(G,»), with Y(t) = V(X_(0),s,t). Consequently Statements (6.6),
(6.7), follow from Theorews (4.6), (5.3), Statement (6.3), and some simple 1
moments evaluations of negative binomial rv 's.

Frequently infectives are denied the ireedcm of movement, as is the case
wien they are hospitalizcd immeciately after they contract a discase. We
describe the progress of this epidemic by an m-dimensional stochastic process

determined by the following trensition rates:

(1 o =
[ a2 (8 (1o () LT X @17, 1,2,
(6.10) R(X (t),r] = ’

[ar)m’“(‘ [Z[ L RO , n==,1r=1,...,m.
Now, we derive for the rodels dcter:in‘d by Equation (6.10) the desired approvy-
1 - a, -1 " m -1
imations. Let B(a ,a,) = [Pz ” (1-2) % dz, ond (ky,owenk ) = K0Tk D7,
— _— r=1 7T
kl’ ceey km e{C,1, ..}, k = z$=lkr' for th. sakc of simplicity we obtain these
approximations only for the symmetric case: when @ T a, ... =a = a, By Lemma

(2.1) it follows tnat for k = 1, 2, ...
M (X, 0+ (k) 7

1 = = K} = ’ *
(6.‘L) P{em,q anq 1"""’} :I’Sl{ d (k) JJ
[Ny

- , Y (%o (0)+x-2]1 4
L] f - i N 3 ,p
L[dl\h),..~’dm(k))t k , vhere 1, ..., 4 e{l,...,m}, and

k - .
d (k) = zq 11(£q-r), r=1, ..., m

By Lemma 2.2 we conclude that the interinfection times: -1 T, 20 e are

iid exponential rva's with a me- equal to u_l independent of the infection

causes: & 1° €. 20 see In particular note that X_(t) - X_(0) is a Poisson
» »

rva with parameter at, te(0,»). Thus, for te(0,»), and r =1, ..., m
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m Xm (O)+k -1
(6.12) P k(t) = [%-Gt(at)S(E) 1 [ ,T N T ]l_
'— r=l Tr
[xm(or«scy-l -1
T Sy , and
(6.13) Pa,r(t) = e-at(gt)kB(Xm,r(O),Xm(O)-xw’r(o)).

Taeo @) BE, L (0)+k,X (0)-X, L(0)+a) @)™ =

X, (0)-1  X_(0)-X_ _(0)-1
= B'l(xm’r(O),X“(O)-Xm,r(O)({l[z »T (1-2) »T .

-(atz)ke'atz(k:)'l]dz.

Since, Condition (1.8) holds we obtain by Theorem 4.3 and Corollary 4.4 that
Pn,g(t)’ Pn,k,r(t) can be approximate respectively by Pw,Eﬁt), Pm,k,r(t)’ given
by Equations (6.12), (6.13).

Next, note that for te(0,~) and all ne{1,2,...}P{Xn(t)2k+xn(0)}SP{Z:=1Tco qSGt},
k=0,1, ... . Thus, Conditions (1.9), (1.10) hold for all t, te(0,=), with
Y(t) being a Poisson rva with mean at, te(0,=)., Consequently by Theorem 4.6

and Statement (6.12) we obtain for te(0,») and r = 1, ..., m, that

(6.14) fim EX__(t) = atX_ ©)x_1(0), and that
e T ,T

(6.15) fim Var(X | _(£)} = atx, (X' (0)
N

v aleix, O, 0%, ()X ©.

Further, by Theorem 4.5 we obtain that for te(0,=)

L

(6.16) Lim Exn(t) = at and &im Var{xn(t)} = at,
S e
M
+ — '
B _a

i




Next, we consider m-dimensional simple epidemic models given by the

following transition rates

-8, 6 8
on X (t)(m-X_(t)+X ()7, =n=1, 2, ...,
(6.17)  R(X (t),r) = romr n n

X0
’

) \ - -
ur)\ r(t) , n = =®,
where 3,8¢(0,2), r = 1, ..., m.
The m-dimensional simple epidemic models determined by Equation (6.17)
generalize univariate simple epidemic models used and motivated by Severo

(1969). Note that Conditions (1.8) and (1.12), with A(k,r) = ark, hold.

Cons .quently by Theorems 4.3, 5.3, we obtain for te(0,~), r = 1, ..., m, that

. _ ook -8
(6.18) Lim P\ L (8) = P{Zqzl(xw’r(03+q-1) Ugsapth,
e
and that
m
(6.19) Lim P"»E(t) = 1 £im Pn,k ,r(t).

e r=lmre r
Let W(t) = max{k:22=1(Xm(0)+q-1)'6qua't}. Then for all te(0,») and almost
all ne{l,Z,...}P{Xn(t)2k+xn(0)} < P{w(t)2k}, k =0, 1, ... . Thus, Conditions
(1.9), (1.10), hold for all t, Be(0,»), with Y(t) = W(t). Consequently the
moments approximations hold for the models determined by Equation (6.17).
Finally following Gart (1968), (1972), consider a population of sus-
ceptibles exposed to a disease and partitioneq to m subpopulations. Gart
assumes that the susceptibility level of an individual varies according to
his membership in the various subpopulations. With small adjustments the
process in(t) can be used to describe the progrcss of this univariate simple

epidemic. 1In this case the components of En(t) represent the number of in-

fectives in the respective subpopulations at time t measured from To. Further,

all the results obtained in this paper carry through for these univariate models,
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